
Sendyne SFP101EVB-LAB Signature Series

Applications

- Test benches
- High accuracy lab environments
- Battery monitoring for industrial, automotive, railroad and utility scale storage
- Current flow precision metering

Operating Specifications

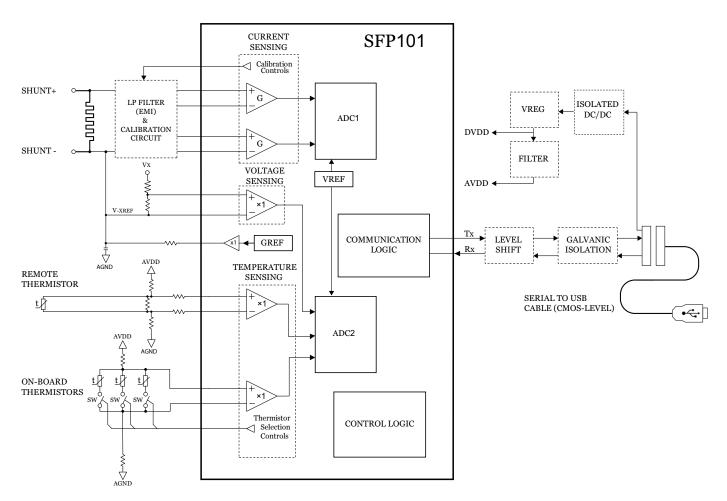
Sendyne[®]

Sendyne® Sensing Products Family

Description

The Sendyne Signature Series SFP101EVB-LAB is a precision current, voltage and temperature measurement module. This individually-calibrated module can resolve currents up to 100 A continuous and 513 A peak. Alternate shunts are available for those who wish to measure smaller or higher currents. The module achieves an offset error of less than 3 mA and gain error of less than 0.05% which is maintained from -40 °C to +125 °C due to Sendyne's proprietary temperature compensation feature. In addition, the SFP101EVB-LAB measures voltage (0.1% of standard nominal full scale voltage of ± 150 V), temperature (at one external point, ±0.5 °C) and provides separate charge, discharge and total Coulomb counters. The time between measurements is fast: 0.005 s, making the unit practical for real time experiments.

Multiple SFP101EVB-LAB modules can run concurrently to measure more than one current and voltage at a time—particularly useful in testing and lab applications. A library for import into National Instrument's LabView is available at www.github.com/ sendyne allowing the use of real-time data from one or more SFP101EVB-LAB modules. Communication is achieved via a LIN-like serial interface.


The complete evaluation kit for the SFP101EVB-LAB also includes a Serial-to-USB cable, as well as Sendyne's PC-based testing software (available as a free download from www.sendyne.com).

Operating Specifications				
Parameter	Value			
Shunt value	100 μOhm			
Power supply	+5.0 V ±10% (isolating DC/DC is built-in)			
Interface	SCI (UART)			
Current measurement range	±100 A continuous/ ±513 A peak			
Voltage measurement range	±150 V			
Rating	Industrial			
Mating Connector	100-mil header			
Module operating temperature range	e -40 °C to +125 °C			

Preliminary

Functional Block Diagram

Figure 1: Functional Block Diagram

The circuit and its operation are patented and patent pending

Technical Specifications

All specifications apply over the full ambient operating temperature range, $T_A = -40$ °C to +125 °C, unless otherwise noted. Supply voltage Vcc is 5.0 V ± 10 %.

Electrical Specifications Parameter	Min	Тур	Max	Units	Conditions/Comments
rarameter	141111	тур	Max	Units	conditions/comments
Power and General					
Та	-40		+125 °C	°C	SFP101EVB-LAB assembly only NOTE1
Ambient Operating and Stor	age				(USB Interface Cable excluded)
Temperature					
Tiocbl	-40		+85	°C	Serial-to-USB Interface cable is normally
Operating and Storage Tem-					plugged into a Host PC typically located
perature of the Serial-to-USI	3				in a human-habitable environment that
interface cable					is much narrower than TIOCBL NOTE2
Vcc	4.5	5.0	5.5	V	Supplied by Serial-to-USB Interface
Supply Voltage					cable from Host PC
Ivcc		16.4		mA	16.4 mA × 5.0 V = 82 mW Typical
Supply Current					
Tpon		0.5	0.75	S	After initial application of power and
Start-up time					power supply stabilization; internal
					start-up delay before communications
					with SFP101EVB-LAB are first allowed
Current Measurement	Throug	h negative a	nd positive	terminals of	f the shunt
Rsн	95	100	105	μΩ	As measured between Negative and
Total Shunt Resistance					Positive terminals (i.e. 100 $\mu\Omega \pm 5$ %)
Rsh-sense		73		μΩ	Effective current-sensing resistance
Shunt Current-sensing					between voltage-drop sensing leads
Resistance					
Ish-nom		±100		А	Continuous rating at room temperature
Nominal Full-scale current					(23 °C) in an open environment without
					forced air movement. Current is sup-
					plied by 1/0 AWG copper cables termi-
					nated with appropriate crimp connectors
					and attached to the shunt's Negative and
					Positive terminals with threaded fasten-
					ers (i.e. bolt + nut) incorporating lock-
					washer or Belleville spring to maintain
					pressure during temperature changes

3

Electrical Specifications					
Parameter	Min	Тур	Max	Units	Conditions/Comments
ISH-TEMP		±200		А	Less than 30 minutes duration, the same
Temporary Full-scale current					conditions as above for Isн-noм, initial shunt temperature is 23 °С
Ish-pk		±513		A	Less than 10 s duration, the same condi-
Peak Full-scale current					tions as above for Ish-TEMP. Maximum
					current value measured and reported
					without clipping or distortion ^{NOTE8}
Ish-trans		±3		kA	Physical survival rating, less than 5 s
Transient over-current					duration, the same conditions as above
					for Ish-temp NOTE3
Ish-ofst	-3	±1	+3	mA	Isн = 0 A, uncalibrated performance,
Current offset error					applies over the full ambient operating
					temperature range,
					$T_{A} = -40 \ ^{\circ}C \ to + 125 \ ^{\circ}C$
Ish-err	-0.1	0.05	+0.1	%	Isн = 20 A, individually calibrated with a
Current value error					module-specific temperature compensa-
					tion table, TA = -40 °C to +125 °C $^{\text{NOTE4}}$
Ish-noise		1.125	1.5	mA _{RMS}	1 Hz current report rate. IC is uncali-
Current measurement noise				1000	brated. Measured over full temperature
					range of $T_A = -40 \text{ °C to } +125 \text{ °C over } 18$
					hours
Ish-count		61.19		μΑ	Minimum discernible current change;
Current measurement					corresponds to one count of Analog to
resolution					Digital Converter (ADC), any current
					report rate ^{NOTE8}
CSH-COUNT		76.49		nC	Minimum discernible amount of charge
Charge measurement					change; corresponds to one count
resolution					change of the accumulated charge value
					in the CUR_ACC registers ^{NOTE8}

Electrical Specifications					
Parameter	Min	Тур	Max	Units	Conditions/Comments
Voltage Measurement	Pins J3-1 & J3-2 (J3-2 is at same potentia			ne potential	as the Negative Terminal of the Shunt)
VX-NOM	±150			V	Input voltage divider of 1 M Ω / 4.99 k Ω
Nominal Full-scale voltage range					
VX-MAX		±241		V	Maximum voltage value measured and
Maximum input voltage					reported without clipping or distortion
VX-MAX -OVLD	-300		+300	V	Short duration of overload, 5 s maxi-
Short time maximum input					mum
voltage overload					
VX-OFST	-20		+10	mV	Vx = 0 V, applies over the full ambient
Voltage offset error					operating temperature range,
					$T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C \ ^{NOTE5}$
VX-TLIM-OFST	-5	±2.5	+5	mV	$Vx = 0 V$, applies over $T_A = +10 \ ^{\circ}C$ to
Voltage offset error for limited	l				+50 °C
temperature range					
VX-ERR	-0.1		+0.6	%	Vx = 25 V, applies over the full ambient
Voltage value error					operating temperature range,
					TA = -40 °C to +125 °C ^{NOTE6}
VX-CAL-ERR	-0.1	±0.05	+0.1	%	$Vx = 25 V$, applies over $T_A = +10 $ °C to
Voltage value error with single)-				+50 °C. The voltage value is calibrated a
temperature calibration for					+25 °C NOTE7
limited temperature range					
VX-NOISE		225	600	μVrms	1 Hz voltage report rate. IC is
Voltage measurement noise					uncalibrated. Measured over full
					temperature range of T _A = -40 °C to
					+125 °C over 18 hours.

Electrical Specifications					
Parameter	Min	Тур	Max	Units	Conditions/Comments
VX-COUNT		28.8		μV	Minimum discernible voltage change;
Voltage measurement					corresponds to one count of Analog to
resolution					Digital Converter (ADC), voltage report
					rate of 10 Hz or lower
Temp. Measurements	Externa	l Thermisto	r connected	l to J3-3 & J	3-4, and three on-board Thermistors
Terror	-1	±0.5	+1	°C	Remote and onboard thermistors, inclu-
Absolute temperature					sive of measurement noise
measurement error					
TDIF-ERR		±10		m°C	Remote and onboard thermistors, for
Differential temperature					small changes in temperature
measurement error					
Тматсн-ов	-0.5	±0.25	+0.5	°C	Between three onboard thermistors
Temperature measurement					thermally coupled to current shunt
matching, onboard thermisto	rs				
Tres		0.5		m°C	Practical temperature measurement
Temperature measurement					granularity for remote thermistor
resolution					
Rтн		10.0		kΩ	±1 % at 25 °C, all thermistors
Thermistors' nominal					
resistance					
Rref	9.99	10.00	10.01	kΩ	For onboard thermistors: R19,
Reference resistance					for remote thermistor R8 and 2x R7

Notes for Electrical Specifications

NOTE1 The plastic body (pin strip spacing/positioning) of connector J2 (6-pin single-row 100-mil spacing header) is only rated for operations within -25 °C to +105 °C; however, mechanical integrity is assured by connector pins soldered to plated-through holes in the PCB; extensive thermal cycling and testing of the SFP101EVB-LAB assemblies have not revealed any instances of connector malfunction. The same considerations apply to connector J3 (4-position miniature screw-terminal block with 100-mil spacing).

NOTE2 If operations of the SFP101EVB-LAB outside of the USB I/O cable temperature range are required, an appropriately-rated extension cable should be utilized between the end of the I/O cable and connector J2 on the SFP101EVB-LAB assembly; the entire USB I/O cable must be located in the environment that complies with Tiocbl specification.

NOTE3 Applications of transient over-currents of maximum amplitude are decisively discouraged as the shunt's resistance may shift as much as ± 0.5 %.

NOTE4 Effectively, parameters ISH-ERR and ISH-TLM-ERR characterize performance of the resistive shunt only; error contributions of the SFP101 IC and of the whole measurement circuit are minimal. Please see Fig. 7 for the chart of typical current value error dependency on the temperature.

NOTE5 Please see Fig. 8 for the chart of typical voltage offset error dependency on the temperature.

NOTEG In fact, parameter VX-ERR characterizes only the performance of the voltage divider that scales the external voltage to the nominal ±1 V input on the SFP101 IC, and formed by two precision resistors (R10 and R9); error contribution of the SFP101 IC is minimal. Please see Fig. 9 for the chart of typical voltage value errors dependency on the temperature. NOTE7 For all practical purposes, single-temperature calibration of the voltage value (at room temperature) removes dependency of the measured voltage value from the initial errors in the resistances of the two precision resistors (R10 and R9) utilized in the external voltage divider; the resulting specification VX-CAL-ERR basically describes the errors in temperature tracking between the resistances of R10 and R9, together with error contribution from thermal drift for the built-in precision voltage reference of the SFP101 IC.

NOTES The SFP101 IC has a programmable value for the parameter ISH-COUNT (and CSH-COUNT), via the setting of register CUR_GAIN (address 0x43) that controls the Full-scale voltage of the Programmable Gain Amplifier (PGA) for the current measurements. However, with the particular shunt (and its resistance), utilized on the module, the ISH-COUNT (and CSH-COUNT) are initialized to the single specific values shown in the Electrical Specifications Table, and corresponding to the Full-scale voltage of ± 37.5 mV for the PGA. Likewise, the specific setting of the PGA and thermal behavior of the shunt defines the information presented for the parameter ISH-PK.

7

Measured Performance Data

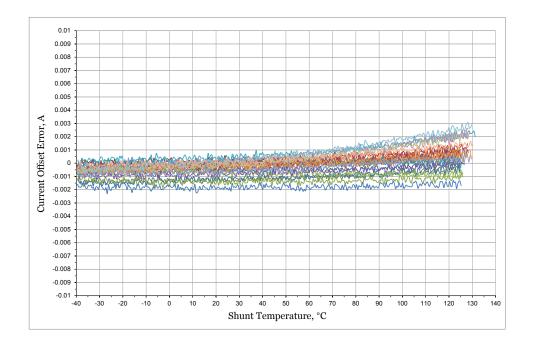


Figure 2: Temperature Dependency of the Absolute Offset Error for Current Measurement

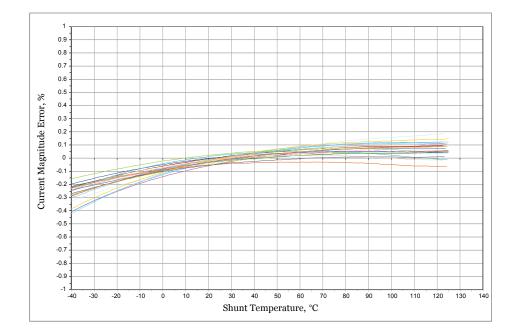
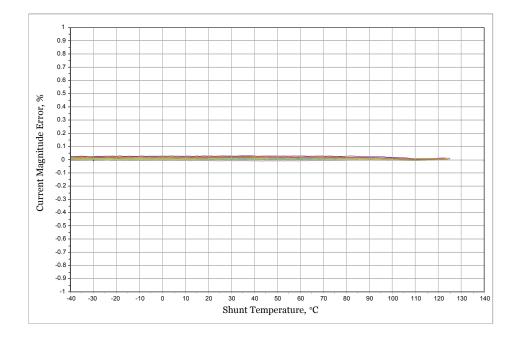



Figure 4: Temperature Dependency of Magnitude Error for Current Measurements, No Compensation

Figure 3: Temperature Dependency of Magnitude Error for Current Measurements, With Compensation

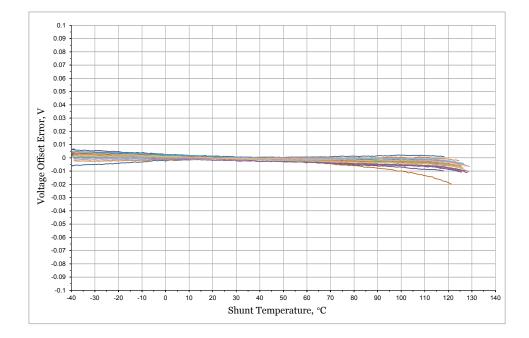
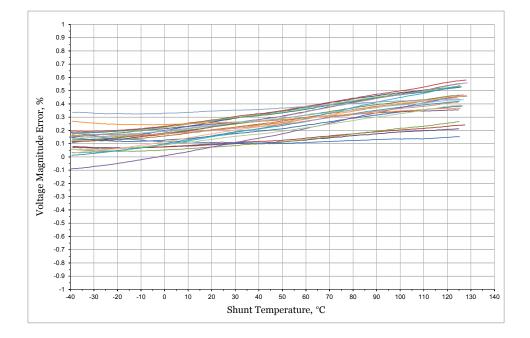
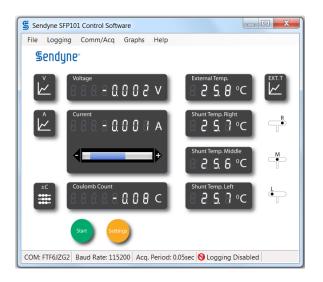
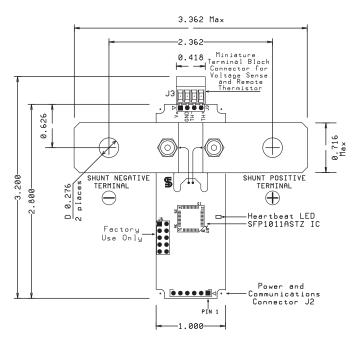



Figure 5: Temperature Dependency of the Absolute Offset Error for the Voltage Measurements

Figure 6: Temperature Dependency of the Relative Magnitude Error for the Voltage Measurements


Evaluation Kit

An evaluation kit is available for Sendyne SFP101EVB-LAB. The kit contains the SFP101EVB-LAB and a module interface cable. Please see the ordering section of this document for details.


Evaluation Software

Sendyne's control software for the SFP101EVB-LAB initializes the SFP101 IC for the desired communications rate (9.6 kBd, 19.2 kBd - default, or 115.2 kBd), and polls for data at the selected acquisition rate; it receives the data, checks the data for communications errors, and decodes the values for voltage, current, coulomb counts (three independent values for Total, Charge, and Discharge accumulators), and temperatures for one external and three on-board thermistors. All of these nine channels can be sampled at the acquisition rates up to 20 Hz, when the fastest communications rate of 115.2 kBd is selected. All SFP101 IC registers can be observed and Read/Write registers can be manipulated using this software.

Mechanicals

SFP101EVB MECHANICAL OUTLINE AND LOCATIONS OF MAIN COMPONENTS NOT TO SCALE DRAWING, ALL DIMENSIONS ARE IN INCHES

Ordering Information

Available devices

Model	Temperature	Description	Package	Ordering Quantity
	Range			
SFP101EVB-LAB	-40 °C to +125 °C	Module	NA	1
SFP101EVB-LAB-25	-40 °C to +125 °C	Module, with	NA	1
		25 micro-Ohm shunt		
		from Vishay Dale		
SFP101EVB-LAB-KIT	-40 °C to +85 °C	Module, Cable, Software	NA	1
SFP100CBL	-40 °C to +85 °C	Module cable	NA	1
SFP101SFT	NA	Module software	NA	1

Ordering Information SFP101EVB-LAB

SFP101 — Sendyne base part number EVB-LAB — Module

Revision History

Revision Table					
Revision Number	Date	Comments			
1.0	03/07/2016	Preliminary; initial release			

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

SENDYNE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EX-PRESSED OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Sendyne disclaims all liability arising from this information and its use. Use of Sendyne devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Sendyne from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Sendyne intellectual property rights.

Patents

US Pat. 8,264,216 US Pat. 8,289,030 US Pat. 9,052,343 Other patents pending

Trademarks

The Sendyne name and logo are registered trademarks of Sendyne Corp.

All other trademarks mentioned herein are properties of their respective owners.

© 2016 Sendyne Corp. All Rights Reserved. 1234567890 1234567890

Sendyne[®]